Power Mean Labeling of some Standard Graphs

P. Mercy∗ & S. Somasundaram†
Department of Mathematics
Manomaniam Sundaranar University
Tirunelveli-627012

Abstract: A graph \(G = (V, E) \) is called a Power mean graph with \(p \) vertices and \(q \) edges, if it is possible to label the vertices \(x \in V \) with distinct elements \(f(x) \) from 1, 2, 3, \(\cdots \), \(q+1 \) in such way that when each edge \(e = uv \) is labeled with

\[
\frac{1}{f(e = uv) = \frac{1}{f(u) + f(v)}}
\]
or

\[
\frac{1}{f(e = uv) = \frac{1}{f(u) + f(v)}}
\]

then the edge labels are distinct. Here \(f \) is called Power mean labeling of \(G \). We investigate on Power mean graph labeling on some standard graphs.

2010 Mathematics Subject Classification : 05C38, 05C78

Keywords and Phrases: POWER MEAN GRAPH, TRIANGULAR SNAKE \(T_n \), ALTERNATE TRIANGULAR SNAKE \(A(T_n) \), QUADRILATERAL SNAKE \(Q_n \), ALTERNATE QUADRILATERAL SNAKE \(A(Q_n) \).

1 INTRODUCTION

The graphs considered here are finite and undirected graphs. Let \(G = (V, E) \) be a graph with \(p \) vertices and \(q \) edges. For a detailed survey of graph labeling one may refer to Gallian[2] and also [1]. For all other standard terminologies and notations we follow Harary[3]. To cite some labeling techniques, we record a few of them. Somasundaram and Ponraj [6, 9] introduced and studied mean labeling for some standard graphs. Santhya et al. [4] and Sandhya and Somasundaram [5] introduced and studied Harmonic mean labeling of graphs. Somasundaram et al. [7, 8] introduced the concept of Geometric mean labeling of graphs and studied their behaviour. In this paper we investigate power mean labeling for some standard graphs like Triangular Snake \(T_n \), Alternate Triangular Snake \(A(T_n) \), Quadrilateral Snake \(Q_n \) and Alternate Quadrilateral Snake \(A(Q_n) \).

∗Corresponding Author:e-mailid: soorjimemphil@gmail.com
†e-mailid: soorjimemphil@gmail.com
2 DEFINITION AND RESULTS

Here we state our definition of Power mean labeling.

Definition 2.1. A graph $G = (V, E)$ with p vertices and q edges is said to be a Power Mean Graph if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1, 2, 3, ..., q + 1$ is such a way that when each edge $e = uv$ is labeled with $f(e = uv) = \left\lceil \frac{f(u) + f(v)}{2} \right\rceil$ or $f(e = uv) = \left\lfloor \frac{f(u) + f(v)}{2} \right\rfloor$ then the resulting edge labels are distinct. In this case f is called Power mean labelling of G.

Remark 2.1. If G is a Power mean labeling graph, then 1 must be a label for one of the vertices of G, since an edge should get label 1.

Remark 2.2. If $p > q + 1$, then the graph $G = (p, q)$ is not a Power mean graph, since it doesn’t have sufficient labels from $\{1, 2, 3, ..., q + 1\}$ for the vertices of G.

The following Proposition will be used in the edge labelings of some standard graphs for Power mean labeling.

Proposition 2.1. Let a, b and i be positive integers with $a < b$. Then

\begin{align*}
(i) \quad & a < \left(\frac{a^p b^a}{a+b} \right)_{ab} < b, \\
(ii) \quad & i < \left(\frac{i+2}{i+2} \right) < (i + 1), \\
(iii) \quad & i < \left(\frac{i+3}{i+3} \right) < (i + 2), \\
(iv) \quad & i < \left(\frac{i+4}{i+4} \right) < (i + 2), \\
(v) \quad & \left(\frac{1}{i+1} \right)_{i+1} = \left(\frac{1}{i+1} \right) < 2.
\end{align*}

Proof. (i) Since $\frac{a^p b^a}{a+b} = a^p b^a < b^a b^a = b^a b^a$, we get the inequality in Proposition 2.1. (i). That is, the Power mean of two numbers lies between the numbers a and b. Thus we infer that if vertices u, v have labels $i, i + 1$ respectively, then the edge uv may be labeled i or $i + 1$ for Power mean labeling.
(ii) As a proof of this inequality, we see
\[i^{i+2} (i+2)^i < \frac{2}{i} [i(i+2)]^i, \]
\[< \frac{2}{i} (i+1)^{2i}, \]
since \(i(i+2) < (i+1)^2, \)
\[< (i+1)^{2(i+1)^{2i}}, \]
\[= (i+1)^{2i+2}. \]

This leads to \([i^{i+2} (i+2)^i \frac{}{2i+2}] < i+1. \) Therefore, if \(u, v \) have labels \(i, i+2 \) respectively, then the edge \(uv \) may be labeled \(i \) and \(i+1. \)

(iii) Next we have
\[i^{i+3} (i+3)^i = \frac{3}{i} [i(i+3)]^i, \]
\[< \frac{3}{i} (i+2)^{2i}, \text{ since } i(i+3) < (i+2)^2, \]
\[< (i+2)^{3(i+2)^{2i}}, \]
\[= (i+2)^{2i+3}. \]

This leads to \([i^{i+3} (i+3)^i \frac{}{2i+3}] < (i+2). \) Hence, if \(u, v \) have labels \(i, i+3 \) respectively, then the edge \(uv \) may be labeled \(i+1 \) without ambiguity.

(iv) Now
\[i^{i+4} (i+4)^i = \frac{4}{i} [i(i+4)]^i, \]
\[< \frac{4}{i} (i+2)^{2i}, \text{ since } i(i+4) < (i+2)^2, \]
\[< (i+2)^{4(i+2)^{2i}}, \]
\[= (i+2)^{2i+4}. \]

Therefore
\[[i^{i+4} (i+4)^i \frac{}{2i+4}] < i+2. \]

Hence if \(u, v \) have labels \(i, i+4 \) respectively, then the edge \(uv \) may be labeled \(i+1. \)

(v) Now
\[2^{i+1} = (i+1)^{i+1}, \]
\[= 1 + \frac{(i+1)}{C_1} + \cdots + \frac{(i+1)}{C_i}, \]
\[\geq 1 + 1 + \cdots + (i+2) \text{ terms,} \]
\[\geq i + 2 > i. \]
Therefore \((1_i 1_{i+1})_{i=1}^{i} = i_{i+1} < 2\) Thus we observe that if \(u, v\) are labeled \(1, i\) respectively, then the edge \(uv\) may be labeled 1 or 2.

2.1 Power Mean labeling for Triangular Snake \(T_n\)

Triangular Snake: A triangular Snake is a graph in which every edge of a path is replaced by \(C_3\). It is denoted by \(T_n\).

Theorem 2.1. Any triangular Snake \(T_n\) is a Power mean graph.

Proof. Let \(T_n\) be a triangular Snake with \(2n - 1\) vertices and \(3n - 3\) edges.

Define a function \(f : V(G) \rightarrow \{1, 2, 3, \ldots, q + 1 = 3n - 2\}\) as

(i) \(f(v_1) = 1,\)

(ii) \(f(v_i) = 3i - 2 \ ; \ 2 \leq i \leq n,\)

(iii) \(f(w_i) = 3i \ ; \ 1 \leq i \leq n - 1.\)

By Proposition 2.1, \((i), (ii)\) and \((iii)\) the edge are labeled

(i) \(E(v_i v_{i+1}) = 3i - 1 \ ; \ 1 \leq i \leq n - 1,\)

(ii) \(E(v_i w_i) = 3i - 2 \ ; \ 1 \leq i \leq n - 1,\)

(iii) \(E(v_{i+1} w_i) = 3i \ ; \ 1 \leq i \leq n - 1.\)

As the edges are distinct, the graph \(T_n\) is a Power mean labeled graph.

Example 2.1. Illustrative example for \(T_6\) in Figure 2.1.

![Figure 2.1: \(T_6\)](image)

2.2 Power Mean labeling for Alternate Triangular Snake \(A(T_n)\)

Alternate Triangular Snake: An alternate Triangular Snake \(A(T_n)\) is obtained from a path \(u_1, u_2, u_3, \ldots, u_n\) by joining \(u_i\) and \(u_{i+1}\) (alternatively) to a new vertex \(w_i\). That is, every alternate edge of a path is replaced by \(C_3\).
Theorem 2.2. Alternate Triangular Snake is a Power mean graph.

Proof. Let $A(T_n)$ be an Alternate Triangular Snake. The following two cases are to be discussed.

Case (i) : If the triangle starts from v_1, define a function $f : V(A(T_n)) \rightarrow \{1, 2, 3, \ldots, q + 1\}$ as

\begin{align*}
(i) \quad & f(v_i) = 2i - 1 ; \quad 1 \leq i \leq n, \\
(ii) \quad & f(u_i) = 2i ; \quad i = 1, 3, 5, 7, \ldots, n - 1.
\end{align*}

By Proposition 2.1. (i), (ii) and (iii), the edge labels are labeled

\begin{align*}
(i) \quad & E(v_iv_{i+1}) = 2i ; \quad 1 \leq i \leq n - 1, \\
(ii) \quad & E(u_iv_i) = 2i - 1 ; \quad i = 1, 3, 5, \ldots, n - 1, \\
(iii) \quad & E(u_iv_{i+1}) = 2i + 1 ; \quad i = 1, 3, 5, \ldots, n - 1.
\end{align*}

Case (ii) : If the triangle starts from v_2, define a function $f : V(A(T_n)) \rightarrow \{1, 2, 3, \ldots, q + 1\}$ as

\begin{align*}
(i) \quad & f(v_1) = 1, \\
(ii) \quad & f(v_2) = 2, \\
(iii) \quad & f(v_i) = 2i - 2 ; \quad i = 3 \leq i \leq n, \\
(iv) \quad & f(u_i) = 2i - 1 ; \quad i = 2, 4, 6, \ldots, n - 2.
\end{align*}

By Proposition 2.1. (i), (ii) and (iii), the edges are labeled

\begin{align*}
(i) \quad & E(v_i v_{i+1}) = 2i - 1 ; \quad 1 \leq i \leq n - 1, \\
(ii) \quad & E(u_i v_i) = 2i - 2 ; \quad i = 2, 4, 6, \ldots, n - 2, \\
(iii) \quad & E(u_i v_{i+1}) = 2i ; \quad i = 2, 4, 6, \ldots, n - 2.
\end{align*}

As the edges are different, any alternate triangular snake $A(T_n)$ is a Power mean labeled graph in both cases.

Example 2.2. Illustrative example for Case (i): $A(T_6)$. in Figure 2.2.
Example 2.3. *Illustrative example for Case (ii):* $A(T_6)$ in Figure 2.3.

\[
\begin{align*}
&u_2 = 3 \quad u_4 = 7 \\
&v_1 = 1 \quad v_2 = 2 \quad v_3 = 4 \quad v_4 = 6 \quad v_5 = 8 \quad v_6 = 10
\end{align*}
\]

Figure 2.3: Case (ii): $A(T_6)$

2.3 *Power Mean labeling for Quadrilateral snake* Q_n

Quadrilateral snake: A Quadrilateral snake Q_n is obtained from a path $u_1, u_2, u_3, ..., u_n$ by joining u_i and u_{i+1} to v_i and w_i respectively and joining v_i and w_i that is every edge of a path is replaced by a cycle C_4.

Theorem 2.3. Any Quadrilateral snake Q_n is a Power mean graph.

Proof. Let Q_n be the Quadrilateral snake with $3n-2$ vertices and $4n-4$ edges (where n is the number of vertices of the path). Define a function

\[
f : V(G) \rightarrow \{1, 2, 3, ..., q + 1\}
\]

as

(i) \quad f(u_i) = 4i - 3 \quad ; \quad 1 \leq i \leq n,

(ii) \quad f(v_i) = 4i - 2 \quad ; \quad 1 \leq i \leq n - 1,

(iii) \quad f(w_i) = 4i - 1 \quad ; \quad 1 \leq i \leq n - 1.

By Proposition 2.1, (i), (ii) and (iii), the edges are labeled

(i) \quad E(u_i u_{i+1}) = 4i - 2 \quad ; \quad 1 \leq i \leq n - 1,

(ii) \quad E(u_i v_i) = 4i - 3 \quad ; \quad 1 \leq i \leq n - 1,

(iii) \quad E(v_i w_i) = 4i - 1 \quad ; \quad 1 \leq i \leq n - 1,

(iv) \quad E(w_i u_{i+1}) = 4i \quad ; \quad 1 \leq i \leq n - 1.

As the edges are distinct, the Quadrilateral snake Q_n is a Power mean labeled graph.
Example 2.4. Illustrative example for Q_5 in Figure 2.4

\begin{figure}[h!]
\centering
\includegraphics[width=\textwidth]{figure2_4.png}
\caption{Q_5}
\end{figure}

2.4 Power Mean labeling for Alternate Quadrilateral snake $A(Q_n)$

Alternate Quadrilateral snake: An alternate Quadrilateral snake $A(Q_n)$ is obtained from a path $u_1, u_2, u_3, \ldots, u_n$ by joining $u_i u_{i+1}$ (alternatively) to new vertices $v_i v_{i+1}$ respectively and then joining v_i and v_{i+1}

ie. Every alternate edge of a path is replaced by a cycle C_4.

Theorem 2.4. Any Alternate Quadrilateral Snake is a Power mean graph.

Proof. Let $A(Q_n)$ be the Alternate Quadrilateral Snake.

The following two cases are to be obtained.

Case (i): Let the Quadrilateral start from v_1.

Define a function $f : V(A(Q_n)) \rightarrow \{1, 2, 3, \ldots, q + 1\}$ as

(i) $f(v_1) = 1,$

(ii) $f(v_2) = 4,$

(iii) $f(v_i) = f(v_{i-2}) + 5$; $i = 3, 4, 5, \ldots, n,$

(iv) $f(u_i) = f(v_i) - 1$; $i = 1, 3, 5, \ldots, n - 1,$

(v) $f(u_i) = f(v_i) - 1$; $i = 2, 4, 6, \ldots, n.$

By Proposition 2.1, (i), (ii) and (iii), the edges are labeled

(i) $f(v_1 v_2) = 2,$

(ii) $f(v_2 v_3) = 5,$

(iii) $f(v_i v_{i+1}) = f(v_{i-2} v_{i-1}) + 5$; $i = 3, 4, 5, \ldots, n - 1.$
Example 2.5. Illustrative example for be the Alternate Quadrilateral Snake $A(Q_n)$ starting from v_1 in Figure 2.5

![Diagram of A(Q_n) starting from v1](image)

Figure 2.5: $A(Q_n)$ starts from v_1

Case (ii) : Let the Quadrilateral start from v_2.

Define a function $f : V(A(Q_n)) \rightarrow \{1, 2, 3, \ldots, q+1\}$ as

(i) $f(v_1) = 1,$

(ii) $f(v_2) = 2,$

(iii) $f(v_3) = 5,$

(iv) $f(v_i) = f(v_{i-2}) + 5 ; \; i = 4 \leq i \leq n,$

(v) $f(u_{i-1}) = f(v_i) + 1 ; \; i = 2, 4, 6, \ldots, n - 2,$

(vi) $f(u_{i-1}) = f(v_i) - 1 ; \; i = 3, 5, 7, \ldots, n - 1.$

By Proposition 2.1., (i), (ii) and (iii), the edges are labeled

(i) $f(v_1v_2) = 1,$

(ii) $f(v_2v_3) = 4,$

(iii) $f(v_i v_{i+1}) = f(v_{i-2}v_{i-1}) + 5 ; \; 3 \leq i \leq n - 1,$

(iv) $f(v_i u_{i-1}) = f(v_i) ; \; 2 \leq i \leq n - 1,$

(v) $f(u_i u_{i+1}) = f(u_{i-1}) ; \; i = 1, 3, 5, \ldots, n - 3.$

As the edges labels are distinct, any alternate Quadrilateral Snake is a Power mean labeled graph in both cases.
Example 2.6. **Illustrative example for be the Alternate Quadrilateral Snake \(A(Q_n)\) starting from \(v_2\) in Figure 2.6**

![Diagram of \(A(Q_n)\) starting from \(v_2\)]

Figure 2.6: \(A(Q_n)\) starts from \(v_2\)

3 **CONCLUSION**

In this paper we have proved that Triangular Snake \(T_n\), Alternate Triangular Snake \(A(T_n)\), Quadrilateral Snake \(Q_n\) and Alternate Quadrilateral Snake \(A(Q_n)\) graphs are amenable for Power Mean labeling and provided illustrative examples to support our investigation.

References

