A NOTE ON GENERALIZED LEFT SEPARATED SPACES

ABSTRACT

The basic properties of \mathcal{D}-spaces are discussed and a Generalized left separated space is introduced which is a \mathcal{D}-space. It is also proved that every finite power of the Sorgenfrey line equipped with the topology generated by the basis $\{(a,b) / a,b \in \mathbb{R}\}$ is a GLS-Space.

INTRODUCTION

In 1979 E.K. Van Douwen and W.F. Pfeffer [1] first introduced the concept of \mathcal{D}-spaces. In this paper we introduce a generalized left separated space with a reflexive binary relation.

Definition 1.1 [6] A neighbourhood assignment for a topological space (X, τ) is a function $N: X \rightarrow \tau$ such that $x \in N(x)$ for each $x \in X$. X is said to be a \mathcal{D}-space if for every neighbourhood assignment N, there is a closed discrete subset \mathcal{D} of X such that $N(x) \setminus x \in \mathcal{D}$ covers X.

The \mathcal{D} property is a covering property [8]. Some of the basic observations immediate from the definition are compact T_1-spaces and σ-compact spaces are \mathcal{D} [5]. Also for a \mathcal{D}-space the extent equals the Lindel"{o}f number of the space [7]. Questions as to which covering property implies and is implied by the \mathcal{D} property are of current research interest in topology. We discuss some basic properties of \mathcal{D}-spaces along with a few examples of spaces which are \mathcal{D}.

1Dr.K.Vijayalakshmi, Saveetha School of Engineering, Saveetha University, Chennai, India
2P.Rajendran, Saveetha School of Engineering, Saveetha University, Chennai, India
3R.Ragavendran, Saveetha School of Engineering, Saveetha University, Chennai, India
1.1 Properties of \(\mathcal{D} \)-spaces

Definition 1.2. [2] A neighbourhood assignment for a subspace \(Y \) of \(X \) is a function \(\mu \) from \(Y \) to open subsets of \(X \) having \(x \in \mu(x) \) for each \(x \in Y \).

Property 1.3. [4] A closed subspace of a \(\mathcal{D} \)-space is \(\mathcal{D} \).

Definition 1.4. [5] Extent of a space \(e(X) \) is the supremum of the cardinalities of closed discrete subsets of \(X \).

Definition 1.5. [7] Lindelöf degree \(L(X) \) is the least cardinal \(K \) such that every open cover of \(X \) has a subcover of cardinality \(\leq K \). For any space \(X \), \(e(X), (X) \).

Property 1.6. If \(X \) is a \(\mathcal{D} \)-space, \(e(X) = L(X) \).

Proof. Observe that if \(U \) is an open cover with no subcover as the range space of a neighbourhood assignment, since \(X \) is a \(\mathcal{D} \)-space, \(X \) has a closed discrete subset \(\mathcal{D} \) of cardinality at most \(K \). Closed discrete subsets of cardinality \(< K \) will correspond to neighbourhood assignments obtained from subcovers of cardinality \(< K \). Hence \(e(X) \equiv L(X) \).

Proposition 1.7. [6] If \(X \) is a \(\mathcal{D} \)-space, the \(e(Y) \equiv L(Y) \) for any closed subspace \(Y \).

Corollary 1.8. Countably compact \(\mathcal{D} \)-spaces are compact.

Proof. Let \(X \) be a countably compact \(\mathcal{D} \)-space. We need to show that every open cover has a finite subcover. From any open cover \(U \) we can construct a neighbourhood assignment, by assigning a \(U(x) \in U \) for each \(x \) with \(x \in U(x) \). Since \(X \) is a \(\mathcal{D} \)-space, this neighbourhood assignment yields a closed discrete subset \(\mathcal{D} \) of \(X \) such that \(\{U(x)/x \in \mathcal{D}\} \) covers \(X \). If we show that this \(\mathcal{D} \) is of finite cardinality then we are done. If not let there exists a closed discrete subset \(\mathcal{D} \) of \(X \) of infinite cardinality. Then choose a countably infinite subset of \(\mathcal{D} \) say \(\mathcal{D}_0 \). For each \(x \in \mathcal{D}_0 \). Let \(V(x) \) be a neighbourhood of \(X \) such that \(V(x) \cap \mathcal{D}_0 \equiv x \). \(\mathcal{D}_0 \) is closed, so \(X_0 \) is open and \(\{X_0\} \cup \{V(x)/x \in \mathcal{D}_0\} \) is then a countable open cover of \(X \) that has no finite subcover contradicting the fact that \(X \) is countably compact. Hence \(\mathcal{D} \) should be finite.

Observe that \(\omega_1 \) the space of all countable ordinals equipped with the order topology is countably compact but not compact. Hence it is not a \(\mathcal{D} \)-space. But \(\omega_1 + 1 \) is a \(\mathcal{D} \)-space. From this we can also conclude that open subspaces of a \(\mathcal{D} \)-space need not be \(\mathcal{D} \).

Definition 1.9. If \(\leq \) is any reflexive (not necessarily transitive) relation on a set \(E \) and \(F \subseteq E \), then \(m \) is called a \(\leq \)-minimal element of \(F \) if \(x \in F \) with \(x \leq m \), then \(x \equiv m \).

Definition 1.10. A space \(X \) is called a generalized left separated space (GLS-Space) if there is a reflexive binary relation \(\leq \) on \(X \), called GLS-relation, such that

1. Every non empty closed subset has a \(\leq \)-minimal element.
2. \(\{y \in X/x \leq y\} \) is open for each \(x \in X \).

Theorem 1.11. Every GLS-Space is a \(\mathcal{D} \)-space.
Proof. Let X be a GLS-Space with GLS-relation \preccurlyeq. Let φ be a neighbourhood assignment for X. Define a new neighbourhood assignment ψ for X by

$$\psi(x) = \{y \in \varphi(x) / x \preccurlyeq y\}$$

It suffices to construct a closed discrete set \mathcal{D} in X with $\bigcup \psi[\mathcal{D}] = X$. With transfinite recursion construct, if possible, an x_ξ defined as follows:

x_ξ is a \preccurlyeq-minimal element of $A_\xi = X \cup \{\psi(x_n) / n < \xi\}$.

We can find such an x_ξ if $A_\xi \neq \emptyset$, since A_ξ is closed. Let α be the ordinal at which the construction breaks down because $A_\alpha = \emptyset$. Let $\mathcal{D} = \{x_\xi / \psi < \alpha\}$. Then $\bigcup \psi[\mathcal{D}] = X \setminus A_\alpha = X$. To show that \mathcal{D} is closed and discrete, it suffices to prove that $\psi(x) \cap \mathcal{D} = \{x\}$ for all $x \in \mathcal{D}$, since $\bigcup \psi[\mathcal{D}] = X$. Let $x_\xi \in \psi(x_\eta)$ for some $\xi, \eta < \alpha$. Then $\xi \leq \eta$ and $x_\eta \preccurlyeq x_\xi$. Both x_η and x_ξ belong to A_ξ. Consequently $x_\eta = x_\xi$ as x_ξ is \preccurlyeq-minimal in A_ξ. Hence \mathcal{D} is closed and discrete and X is a \mathcal{D}-space.

Now let us look at some of the consequences of the above theorem.

Let $K(X)$ be the collection of non empty compact subsets of a Hausdorff space X. Equip $K(X)$ with the Pixely Roy topology, i.e., basic neighbourhoods about $F \in K(X)$ have the form $\{G \in K(X) / F \subseteq G \subseteq U\}$, where U is an open neighbourhood of F in X. Since ordinary inclusion is a GLS-relation, $K(X)$ is a GLS-Space and hence a \mathcal{D}-space.

Lemma 1.12. Let \preccurlyeq be a reflexive and transitive binary relation on a space X such that for every non empty \preccurlyeq-chain K in X there is an $m \in \overline{K}$ with $m \preccurlyeq x$ for all $x \in K$. Then each non empty closed subset of X has a \preccurlyeq-minimal element.

Proof. Let F be a non-empty closed subset of X. For every non empty \preccurlyeq-chain K in F, there is an $m \in \overline{K}$ with $m \preccurlyeq x$, for all $x \in K$; so $m \in F$. Now it follows from the Kuratowski-Zorn lemma that F has a minimal element.

Let S denote the Sorgenfrey line equipped with the topology generated by the basis $\{(a, b) / a, b \in \mathbb{R}\}$ and T be the space of all irrationals equipped with the subspace topology inherited from S.

Theorem 1.13. Every finite power of S is a GLS-Space.

Proof. Let $H = S \setminus [0, \infty)$, half the Sorgenfrey line. Then H and S are homeomorphic. We shall consider H instead of S. Let n be non negative integer. As usual, the ith coordinate of $x \in H^n$ is $x_i, 1 \leq i \leq n$. Define a reflexive and transitive binary relation \preccurlyeq on H^n by

$$x \preccurlyeq y \Leftrightarrow x_i \leq y_i \text{ for all } 1 \leq i \leq n.$$

Then $\{y \in H^n / x \preccurlyeq y\}$ is open in H^n for each $x \in H^n$. Let $K \subseteq H^n$ be a \preccurlyeq-chain, and define $m \in H^n$ by

$$m_i = \inf \{x_i / x \in K\}$$
Then \(m \leq x \) for each \(x \in K \), and since \(K \) is a \(\preceq \)-chain, for each \(\varepsilon > 0 \) there is an \(x \in K \) such that \(m_i \leq x_i < m_i + \varepsilon \) for \(1 \leq i \leq n \). Consequently \(\bar{K} \). It follows from lemma(1.12) the \(\preceq \) is a GLS-relation. Hence every finite power of \(S \) is a GLS-Space.

Theorem 1.14. Every finite power of \(S \) is a \(\mathcal{D} \)-space.

Proof. The proof is a consequence of theorem(1.10) and theorem(1.12).

In fact \(S \) is hereditarily a \(\mathcal{D} \)-space. In particular \(T \) is a \(\mathcal{D} \)-space.

Note 1.15. The \(\mathcal{D} \)-property is not a topological property.

Consider the Sorgenfrey line \(S \) equipped with the topology generated by the basis \(([a, b]) / a, b \in \mathbb{R} \). Both \(S \) and \(T \) are not homeomorphic since \(S \) is strongly refractible whereas \(T \) is not.

References

